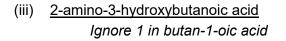
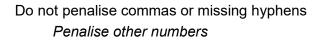
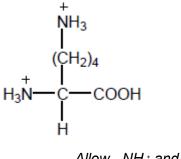

M1.(a) (i)

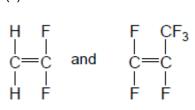


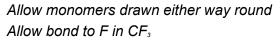

(ii)

1

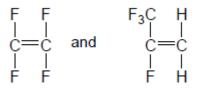

1

1


Allow – $NH_{3^{+}}$ and $^{+}NH_{3^{-}}$


(b) (i) Condensation Allow polyester

> (ii) <u>propane-1,3-diol</u> *Must have e Allow 1,3-propan<u>e</u>diol*


(c) (i) Addition Not additional

(ii)

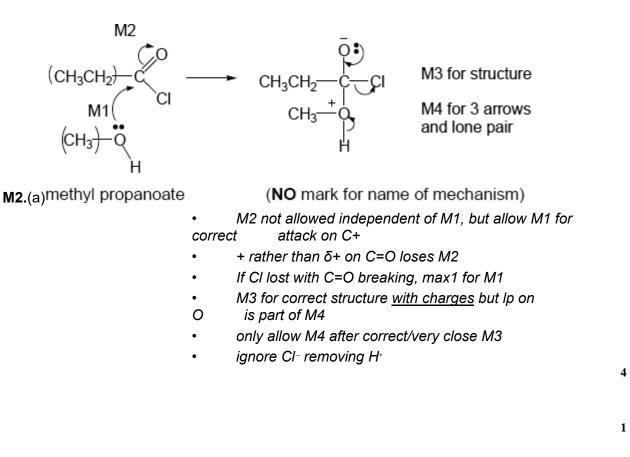
OR

1 for each structure within each pair

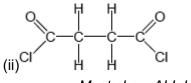
(d) c

If wrong,
$$CE = 0$$

1


1

1


1

1

(b) (i) pentan<u>e</u>-<u>1,5</u>-diol Second 'e' and numbers needed Allow <u>1,5</u>-pentan<u>e</u>diol but this is not IUPAC name

Must show ALL bonds

1

(iii) All three marks are independent

M1 (base or alkaline) Hydrolysis (allow close spelling)

M2 <u>δ+ C</u> in polyester

M3 reacts with OH- or hydroxide ion

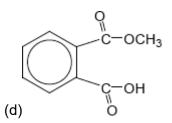
Not reacts with NaOH

CH (c) (i) Allow CH₃COOH or CH₃CO₂H

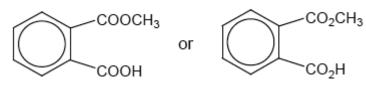
1

1

1


1

(ii) (nucleophilic) <u>addition-elimination</u> Both addition and elimination needed and in that order


OR

(nucleophilic) addition followed by elimination Do **not** allow electrophilic addition-elimination / esterification Ignore acylation

- (iii) any two from: ethanoic anhydride is
 - less corrosive
 - less vulnerable to hydrolysis
 - less dangerous to use,
 - less violent/exothermic/vigorous reaction OR more controllable rxn
 - does not produce toxic/corrosive/harmful fumes (of HCI) OR does not produce HCI
 - less volatile
 NOT COST
 List principle beyond two answers

- (e) (i) ester Do **not** allow ether Ignore functional group/linkage/bond
 - (ii) 12 or twelve (peaks)
 - (iii) 160 185
 Allow a number or range within these limits
 Penalize extra ranges given
 Ignore units

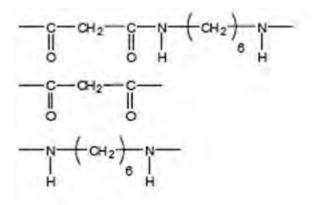
(f)	(i) sulfuric acid	sodium hydroxide	\checkmark
	hydrochloric acid	ammonia	X or blank
	ethanoic acid	potassium hydroxide	\checkmark
	nitric acid	methylamine	X or blank

4 correct scores 2 3 correct scores 1 1

1

1

(ii) <u>Pink to colourless</u>


Allow 'red' OR 'purple' OR 'magenta' instead of 'pink' Do **not** allow 'clear' instead of 'colourless'

[21]

2

1

M3. (a) (i)

Allow -CONH- or - COHN -

Mark two halves separately lose 1 each for missing trailing bonds at one or both ends or error in peptide link or either or both of H or OH on ends

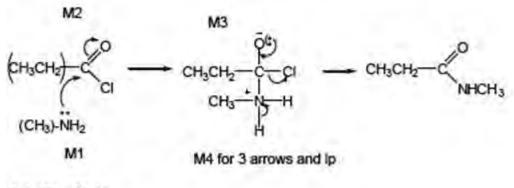
1

1

1

1

1


Not allow $-(C_6H_{12})-$ Ignore n

(ii) **M1** in polyamides - H bonding

M2 in polyalkenes - van der Waals forces Penalise forces between atoms or van der Waals bonds

M3 Stronger forces (of attraction) in polyamidesOr H bonding is stronger(must be a comparison of correct forces to score M3)Do not award if refer to stronger bonds

(b) (i) (nucleophilic) addition elimination

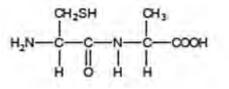
Not allow N-H₂

Minus sign on NH₂ loses M1

M2 not allowed independent of **M1**, but allow **M1** for correct attack on C+ + rather than δ + on C=O loses **M2** If CI lost with C=O breaking, max 1 for **M1 M3** for correct structure <u>with charges</u> but Ip on O is part of **M4** only allow **M4** after correct/ very close M3 For M4, ignore NH₃ removing H⁺ but lose **M4** for CI removing H⁺ in mechanism, but ignore HCI as a product 1

4

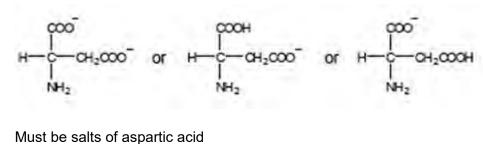
1

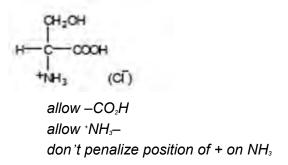

1

1

1

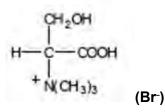
(ii) <u>N-methylpropanamide</u> Not N-methylpropaneamide


(c)


(d) (i) <u>2-amino-3-hydroxypropanoic acid</u>

(ii)

Must be salts of aspartic acional allow –CO₂⁻ allow NH₂–


(iii) Penalise use of aspartic acid once in d(iii) and d(iv)

1

1

(iv) Penalise use of aspartic acid once in d(iii) and d(iv)

allow $-CO_2^$ must show C-N bond don't penalize position of + on N(CH₃)₃

[16]

M4.(a) (i) (As a) soap
 Allow washing, cleaning, degreasing, detergents
 (ii) (Bio)diesel or biofuel or fuel for cars/lorries
 Allow to make soap
 (iii) (Cationic) surfactant /detergent /fabric softener /germicide / shampoos /(hair) conditioners /spermicidal jelly

(b) (i) (Poly)ester

1

1

1

1

1

1

Terylene **OR** PET Allow polyester

(ii) (Poly)amide

Kevlar **OR** nylons Ignore numbers with nylons Allow polyamide(e)

(iii) (Independent marks) CE = 0

Hydrogen bonding in b(ii)

Imfs in (b)(ii) are stronger

OR

H bonding stronger than dipole–dipole/van der Waals/ dispersion/London forces in b(i)